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Quantum mechanical calculations are reported for electron-methane elastic 
scattering and rotational excitation cross sections at 10 eV impact energy. The 
calculations employ a fixed-nuclei close coupling formalism with full 
incorporation of symmetry and are used to test previous laboratory-frame 
calculations employing a direct coupling approximation.  Good  agreement is 
obtained. Additional comparisons to previous theoretical and experimental 
work are also presented, and the contributions of  the various symmetries to 
the cross sections are analyzed in terms of representatve matrix elements of  
the interaction potential. 
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1. Introduction 

Two of the authors and coworkers have recently presented a calculation of the 
elastic scattering and rotational excitation cross sections for electron scattering 
by ground-state methane [1]. This calculation employed an effective interaction 
potential including nonadiabatic charge polarization effects and a laboratory- 
frame close coupling expansion [2, 3] that was converged with respect to the 
rotational-orbital basis under  the direct coupling approximation.  In this approxi- 
mation only channels directly coupled to the initial state by nonzero potential 
matrix elements are included. Since the validity of  this approximation is untested 
it is desirable to do so, and in the present paper  we present a calculation for the 
same effective potential that is converged without this approximation.  Comparison 
of the cross sections obtained in the two ways provides a test of  the direct coupling 
approximation.  
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The new calculations reported here are performed by a fixed-nuclei molecule- 
frame close coupling expansion [4-7] in order to take full advantage of the 
molecular symmetry. Full details of the molecule-frame formalism are presented 
in the preceding paper [7]. Although the fixed-nuclei formalism neglects rotational 
kinetic energy effects that are included in the laboratory-frame calculation, it is 
widely applied to electron-molecule scattering [8], and the approximation is 
generally considered not to introduce significant error when the impact energy 
greatly exceeds the rotational excitation threshold. The latter condition is well 
satisfied in the present case because the highest final rotational quantum number 
considered is j ' =  10, which has an excitation energy of 0.07 eV, whereas the 
impact energy considered here is a 10 eV. Further discussion of  this point is 
provided in Sect. 4. 

Section 2 presents calculational details, Sect. 3 presents the results, and Sect. 4 
presents a discussion of these results and a comparison to previous theoretical 
and experimental work. Section 5 is a brief summary. 

2. Calculations 

We consider the case of vibrationally and electronically elastic scattering of an 
electron by CH4 at 10 eV incident energy. We make the rigid rotator approxima- 
tion, and we include only one electronic state explicitly in the state expansion. 
Virtual electronic excitation is included by means of a polarization potential, and 
in particular we have chosen the effective potential to be the "Static, Exchange, 
plus local-kinetic-energy-Polarization" (SEPlke) potential used in our previous 
study [1]. This calculation permits us to test the validity of the direct coupling 
approximation employed in previous laboratory-frame calculations and the fixed- 
nuclei approximation employed here by comparing the present cross sections to 
those of our previous calculation [1]. 

The SEPlke potential is an ab initio one with no adjusted parameters. It has been 
described in detail in [1] so we only summarize it here. We calculated the static 
potential, adiabatic polarization potential, and target electronic density from 
extended-basis-set Hartree-Fock calculations. The exchange potential is evalu- 
ated by the semiclassical exchange approximation [9], according to which it is 
a functional of the static potential and target density. The polarization potential 
is evaluated by the local-kinetic-energy semiclassical polarization approximation 
[10] as a functional of the static-exchange and adiabatic polarization potentials. 
The choice of the SEPlke potential for the previous study gave very good 
agreement with the most recent experimental differential cross section measure- 
ments [11-13]. 

For electronically elastic scattering the effective potential has the full symmetry 
of the molecule, and it can be written as [6] 

co 

r A l l  ~ v(~,~)= E E v ~ ( ) x ~ ( ~ , )  (1) 
A=O hx = 1  
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where  r is the d is tance  f rom the center  o f  mass  of  C H  4 to the  electron,  o3 denotes  
angu la r  coord ina tes  0, 4> with  respect  to a molecu le - f ixed  f rame,  VAh, is an 

expans ion  coefficient,  and  X Pu is a symmet r i zed  h a r m o n i c  that  defines a basis  hxA 
for  c o m p o n e n t  U of  i r reduc ib le  r ep resen ta t ion  P o f  the  mo lecu l a r  Ta po in t  g roup  

and  is def ined by  

P U  ~ !,_ P U  . T m > .  l - ~, ( 2 )  
XhaA(O)  ) = ~ OhxArna  I A  CO.X)) 

rrl A 

where  Pu bGamA is a coefficient and  Y~*(o3) is a spher ica l  ha rmonic .  No te  that  Eq. 
(1) involves on ly  the to ta l ly  symmet r ic  po in t  g roup  A1; since this is nondegene ra t e ,  
U = 1. Fo r  the  presen t  ca lcu la t ions  v(r, ~) was e x p a n d e d  in ali A1 symmet r i zed  
ha rmon ic s  wi th  A -< 13. The nunaber o f  terms in the sum over hA is the  n u m b e r  
o f  to ta l ly  symmet r ic  genera l i zed  ha rmonics  with A nodes  in 0. Because  of  the 
high symmet ry  o f  CH4, there  are only 12 terms with A -< 13. Fig. 1 shows the 

*,Plkei ~ �9 rPlke/ spher ica l  c o m p o n e n t  %1 t r )  and  the l ead ing  nonspher i ca l  c o m p o n e n t  vo3 tr) 
of  the loca l -k ine t ic  energy po la r i za t ion  po ten t ia l  and  compares  them to the 
spher ica l  componen t s  Vo~(r) of  two po la r i za t ion  po ten t ia l s  f rom the l i terature ,  
name ly  the p a r a m e t e r - d e p e n d e n t  po ten t ia l  o f  G ian tu rco  and  T h o m p s o n  [14] 
(GT)  with thei r  empi r ica l  cutoff value  o f  ro = 0.88ao chosen  by  a p p e a l  to experi-  
menta l  da t a  and  with ano the r  cutoff value  of  0.84ao that  they also used,  and  
th i rd ly  the  recent  pa ramete r - f r ee  po la r i za t ion  m o d e l  o f  Ja in  and  T h o m p s o n  [15] 
(deno ted  JT). An  in teres t ing  aspec t  o f  the compar i sons  is that  the  po la r i za t ion  
poten t ia l s  used  by  these workers  are a s sumed  spher ica l  while ours  does  not  suffer 
f rom this res t r ic t ion;  the  figure shows,  however ,  that  our  A = 3 c o m p o n e n t  is 
abou t  an o rde r  o f  magn i tude  smal le r  than  our  a = 0 componen t .  At  the outer  
m a x i m u m  of  the A = 3 componen t ,  though,  it is abou t  one- four th  as large as the 
a = 0 one.  The  present  Pike po la r i za t ion  po ten t ia l  is very s imi lar  in s t rength to 
the JT poten t ia l ,  and  bo th  of  these poten t ia l s  are much  less a t t ract ive than  the 
o lde r  G T  potent ia l .  

Fig. 1. The h = 0 and h -  3 components of the Pike 
polarization potential (in hartrees) as functions of r 
(in bohrs) are shown as a solid curve. The h = 0 com- 
ponents of the polarization potentials of Jain and 
Thompson (labelled JT) and of Gianturco and 
Thompson (labelled GT) for the cutoff values r o= 
0.88a o and r o = 0.84 a 0 are shown as dashed curves. 
Recall that the h = 0 components are (4~r) 1/2 times the 
spherical average 
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The scattering wave function for component  U of irreducible representation P 
is e~jpanded as [6] 

oo Hmax(P,i) 

r f m  ( r )X , ,  (to) (3) 
/ = 0  H = I  

where 7 denotes (r, o3); f ~  is the radial function in channel P, U, H, l; and 
Hmax(P., l) denotes the number  of  basis functions with the same values of  P,U, 
and /. The resulting close coupling equations are [6] 

d 2 l(l+ 1) 2#~ ,2 t - i rE]  , . P u t  , 2 t ' t r  , 
vP~m( r) • ~ r ) = - - ~  H~,r vP,UH,r( r) fP,U,( r), 

(4) 

where IZr is the reduced mass, h is Planck's constant divided by 2~-, ~ '  denotes 
that the sum does not include the term with H ' =  H and l ' =  l, and 

PU _I ~ P' U'* ~ VH,H,r(r) = dwXH,r (w)v(r, o3)xPU(o3). (5) 

The close coupling equations given in (4) were solved using the Minnesota 
Numerov code [16] (MNN,  version 80-10A). We solved a separate set of  coupled 
equations for each of the five irreducible representations of  the Td point group, 
i.e. A~, A2, E, T1, and T2. The integration was started at to-- 10-Sao for the A1 
symmetry, which has a n / = 0  term, and at r0 = 10-4ao for A2, E, 7"1, and T2, for 
which min 1/> 1. The first four integration steps were carried out with a stepsize 
of  5 • 10-Sao, then the stepsize was allowed to grow according to the variable- 
stepsize algorithm with the parameter  DELTA [16] set equal to -1 .5  x 10 -8. The 
stepsize was not allowed to exceed 0.1024ao in order to avoid numerical instability 
for r between 30 and 50ao. The ending point at which the molecule-frame T 
matrix was computed was fixed at rma x = 50.0a o. This value was chosen such that 
the dominant reactance matrix elements as well as the eigenphase sum were both 
converged to 1% or better with respect to increasing rmax. 

In practice of  course the sum over 1 is truncated at a finite number of  terms. In 
order to illustrate the overall degree of  convergence with respect to the maximum 
value of the orbital quantum number  retained in the expansion of  the scattering 
function, Ima• and consequently the number  of  channels N(P),  results will 
be presented for two different bases referred to as IV and V. The N(P)  and 
/max(P) values as well as the eigenphase sums are given for these bases in Table 
1. The criterion for basis V was that the dominant  T matrix elements are converged 
to better than 1% while  less important ones are reasonably converged. We also 
include in Table 1 the central-processing-unit (CPU) time for each solution of 
the coupled equations. 

The molecule-frame transition matrices were transformed to the laboratory frame 
using equations published elsewhere. Basis IV yields laboratory frame results for 
total angular momentum J <- 10 and basis V yields results for J-< 12. (For larger 
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Table 1. Basis sets for scattering in the molecule-fixed frame 
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Eigen phase sum CPU time a 
lmax P N(P)  (mod ~r) (min) 

l0 b A I 8 2.206 2.5 
A 2 3 0.0176 0.9 
E 10 0.7313 3.1 
T 1 12 0.2626 4.5 
T 2 18 0.9546 15.3 
Total 26.3 c 

12 a A 1 11 2.212 5.3 
A 2 4 0.0191 1.0 
E 14 0.7386 7.6 
T 1 18 0.2730 14.5 
T 2 24 0.9696 39.3 
Total 67.7 c 

a Central processing unit time on the University of Minnesota Department of 
Chemistry Digital Equipment Corporation VAX 11/780 computer with floating- 
point accelerator. All calculations were performed in double precision, i.e. with 
8-byte words 
bBasis IV 
~ Total CPU time in minutes 
d Basis V 

J we used  the po la r i zed  Born a p p r o x i m a t i o n  [17] to converge  the  e las t ic  scatter-  
ing.) The  m a x i m u m  ro ta t iona l  quan tum number ,  jmax(J), and  a n u m b e r  o f  
channels ,  N ( J ) ,  for  each  J are summar i zed  in Table  2. 

A rough  idea  o f  the savings in compu te r  t ime ach ieved  by  using the f ixed-nucle i  
fo rmula t ion  o f  the scat ter ing p r o b l e m  ins tead  o f  the l abo ra to ry - f r ame  fo rmula t ion  
inc lud ing  the ro ta t iona l  H a m i l t o n i a n  can be  ga ined  by  compar i s ing  the basis-V 
C P U  t ime in Table  1 to the  t ime for  a c o m p a r a b l e  l abo ra to ry - f r ame  ca lcu la t ion  
involving coup l ed  channels  so lu t ions  for  J -<  12 and  the po la r i zed  Born  approx i -  
ma t ion  for  J = 13-40. Us ing  basis  I[1] for  J -<  12 shows that  the  molecu le - f r ame  
ca lcu la t ion  is less C P U - t i m e - c o n s u m i n g  by  abou t  a fac tor  o f  two. 

3. Results 

The first few first-row T mat r ix  e lements  for  J = 0 and  1 c o m p u t e d  di rec t ly  in 
the  l abora to ry - f ixed  f rame and  c o m p u t e d  by  t r ans fo rming  the molecule - f ixed  T 
matr ix ,  are  l is ted in Table  3. This t a b l e  shows excel lent  ag reement  o f  the two 
i n d e p e n d e n t  ca lcula t ions ,  conf i rming the cons is tency  o f  our  equa t ions  and  our  
numer ica l  work,  and  also ind ica t ing  tha t  the  CPU- t ime  savings o f  the  molecule-  
f ixed ca lcu la t ion  are ach ieved  with negl igible ,  i f  any,  loss of  accuracy.  

The  convergence  o f  the close coupl ing  bases  IV and  V is shown in Table  4 where  
the s ta te- to-s ta te ,  ro t a t iona l ly  elast ic  and  inelast ic ,  and  v ib ra t iona l ly  elastic,  
ro t a t iona l ly  summed ,  dif ferent ia l  cross sect ions  are l is ted for  se lec ted  scat ter ing 
angles,  and  in Table  5 where  the  co r r e spond ing  integral  and  m o m e n t u m  t ransfer  
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Table 2. Maximum rotational quantum numbers and numbers of 
channels for each total angular momentum for e--CH4 scattering 
in the laboratory-fixed frame obtained by transforming the 
molecule-frame transition matrix 

IVa, b va,e 

Basis 

J Jmax(J) N(J)  Jmax(J) N(J) 

0 10 8 12 11 
1 11 15 12 19 
2 11 21 12 28 
3 11 27 11 31 
4 11 31 11 36 
5 11 34 11 40 
6 10 34 10 39 
7 9 30 9 35 
8 8 24 8 29 
9 8 21 8 26 

10 7 13 7 18 
11 0 d (1) 6 11 
12 0 d (1) 6 10 
13-40 0 d (1) 0 d (1) 

aThere is no limit on the centrifugal sudden decoupling index n, 
as used in [12], but all elements with l>/max were zeroed 
b/max = 10 
Clr~ax = 12 
dpolarized Born Tll matrix element 

Table 3. A few first row transition matrix elements from j = 0 ,  l = J  to j'>-O, [J- j ' [~l '<-J+j  ' 
computed with the SEPIke potential 

J = 0  J = l  

j '  Laboratory a Bodyb Laboratorya Bodyb 

0 (-1.7554, -0.57995) (-1.7555, -0.57981) (-0.63358,-0.92919) (-0.63342, 0.92914) 
3 (0.25406,-0.16166) (-0.25411,-0.16177) (0.01114, -0.00695) (-0.01027. 0.00577) 

(0.02080, 0.03509) (-0.02085, -0.03512) 
4 (0.03878, 0.02816) (-0.03884,-0.02821) -0.00778, -0.02042) (0.00794, 0.02025) 

(0.00262, 0.00471) (-0.00263, -0.00472) 
6 (-0.00083,-0.00128) (0.00084, 0.00129) (0.00048,  0.00106 (-0.00049, -0.00106) 

(-0.00004, -0.00015) (0.00004, 0.00015) 
7 (0.00006, 0.00017) (0.00006, 0.00017) (-0.000001,-0.00013) (-0.000001,-0.00013) 

(-0.000004, 0.000006) (-0.000004, 0.000006) 

Computed directly in the laboratory-fixed frame using basis I of Res [20] 
b Computed in the molecule-fixed frame, then transformed to the laboratory-fixed frame using basis 
V 
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Table 4. State-to-state and vibrationally elastic differential cross sections (a2/sr) at selected angles, 
computed with laboratory-fixed T matrix elements obtained by transforming the molecule-fixed T 
matrix 

d O'oj,/d 
0 
(deg) Basis j '  = 0 3 4 6 7 0-10 a 

0 IV b 5.25 (+1) 0 6.09 ( -1)  1.62 (-3)  0 5.32 (+l )  
V c 5.20 (+1) 0 6.16 ( -1)  1.64 (-3)  0 5.27 (+1) 
Exp.d e 

40 IV 1.24 (+1) 2.76 ( -1)  6.03 (-1)  8.14 (-4)  6.59 (-5)  1.33 (+1) 
V 1.24(+1) 2.74(-1) 6.09(-1) 8.61 (-4)  6.79 (-5)  1.33 (+1) 
Exp. 1.08 (+1) 

60 IV 4.81 4.06 (-1)  5.86 (-1)  8.24 (-4)  1.00 ( -4)  5.81 
V 4.84 4.08 (-1)  5.92 (-1)  8.89 (-4)  1.00 (-4)  5.85 
Exp. 4.89 

90 IV 2.34 2.86(-1) 5.48 (-1)  2.68 ( -3)  1.32 ( -4)  3.18 
V 2.35 2.87 (-1)  5.54 (-1)  2.81 (-3)  1.34 ( -4)  3.20 
Exp. 2.86 

120 IV 3.80 ( -1)  9.79 (-2)  5.23 ( -1)  8.07 ( -3)  3.86 (-4)  1.01 
V 3.75 (-1)  9.89 (-2)  5.29(-1) 8.25 ( -3)  3.90 ( -4)  1.01 
Exp. 9.28 (-1)  

140 IV 5.43 2.46 (-1)  5.38 ( -1)  1.29 (-2)  7.43 (-4)  6.22 
V 5.45 2.49 (-1)  5.45 ( -1)  1.31 (-2)  7.50 ( -4)  6.25 
Exp. 3.61 

180 IV 1.86 (+1) 7.23 (-1)  5.94 (-1)  1.82 (-2)  1.25 ( -3)  1.99 (+1) 
V 1.86 (+1) 7.31 (-1)  6.01 ( -1)  1.84 (-2)  1.27 (-3)  2.00 (+1) 
Exp. e 

aThis sum over j' is called d~ro/d~ in [20] 
bCorresponds to Ima x = 10 in the molecule-fixed frame 
~ to Ima x = 12 in the molecule-fixed frame 
dExperimental values of [36] 
eUnavailable 

cross sections are given. In addition, we compare the differential cross sections 
in Table 4 to the available experimental measurements of  Tanaka et al. [12] (the 
experimental results o f  Newel l  et al [13] agree well with the data of  Tanaka et 
al., as reviewed elsewhere [18]), and in Table 5 we compare the integral and 
momentum transfer cross sections to the corresponding values obtained directly 
in the space-fixed frame with two different types of  potentials, as well as to the 
available values obtained by calculations by Jain and Thompson [15]. We have 
already compared the Ja in-Thompson polarization potential to ours, and we note 
here that they also used a different exchange potential, the Hara-free-electron-gas- 
exchange approximation, as compared to the one used here. In Fig. 2 we compare 
the present basis-V calculations of  the state-to-state j = 0 ~ j ' =  0, 3, 4 differential 
cross sections to those o f  Jain and Thompson.  

The molecule-frame results in Table 5 for the sum over all j' are obtained by 
transforming the molecule-frame T matrix elements to the laboratory frame, 
computing cross sections, and summing. This quantity can also be computed 
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Table 5, Integral and momentum transfer state-to-state and vibrationally elastic cross sections (a 2) 

Molecule frame a Laboratory frame 
-Jain & 

j '  Basis IV Basis V Basis III b Basis III r Thompson d 

o0j, 
0 8.32 (+1) 8.32 (+1) 8.34 (+1) 5.81 (+1) 7.60 (+1) 
3 3.44 3.45 3.44 8.96 1.91 
4 7.05 7.13 7.00 1.42 (+1) 3.87 
6 6.36 (-2) 6.51 (-2) 6.28 (-2) 1.29 (-1) --~ 
7 3.62 (-3) 3.65 (-3) 3.43 (-3) 5.65 (-3) --~ 
3-10 f 1.06 (+1) 1.06 (+1) 1.05 (+1) 2.33 (+1) 5.84 
0-10 f 9.38 (+1) 9.39 (+1) 9.39 (+1) 8.14 (+1) 8.18 (+1) 

O r O 3 ,  

0 5.67 (+1) 5.66 (+1) 5.68 (+1) 4.48 (+1) 5.29 (+1) 
3-10 f 1.04 (+1) 1.05 (+1) 1.04 (+1) 2.26 (+1) 5.68 
0-10 ~ 6.71 (+1) 6.72 (+1) 6.72 (+1) 6.74 (+1) 5.85 (+1)' 

aSEPlke potential, present calculations 
bSEPlke potential, [20] 
~ potential, [20] 
d[12] 
eUnavailable 
fSummed over the range of j '  indicated 

6 0 ~  i i ~ i t i i t i J i i i i i 

~ \,'.,,o i ke 

r o ~ ' "  

:E 
~, 1p .. ~\ I " 

I I  I 

,..~ OA 
F I , ' ~ , i  .," 

. , ,  
- - ' 0  zo 40 60 80 100 120 140 160 180 

Scattering Angle (deg) 

Fig. 2. Differential cross sections for 
pure elastic scattering (labelled 0 lke JT 
where lke stands for the semiclassical 
polarization potential in the local- 
kinetic-energy approximation, and JT 
stands for the spherically symmetric 
polarization potential of Jain and 
Thompson) and state-to-state rotational 
excitation cross sections forj  = 0 ~ j ' =  3 
and 4 as functions of the scattering angle. 
The curves labelled lke were calculated 
with basis V 
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directly from the molecule-frame T matrix elements by averaging, i.e. 

7rh 2 
H' T P U  2 ~ o-0j'- 2/zrE ~ ~ Y~ ~ ~p ~ --HtH1 (6) 

As a further check we calculated this sum from Eq. (6) and obtained complete 
agreement with the values in the table. 

Table 6 presents our full set of state-to-state and vibrationally elastic differential 
cross sections at 21 scattering angles, while in Table 7 we compute the partial 
wave contribution ql to the integral cross sections obtained with basis V, to the 
corresponding values computed directly in the laboratory frame with basis III 
[1] and the SEPlke potential. 

Furthermore, in Table 8, we present the individual contributions of the irreducible 
representations of the Td point group to the rotational state-to-state and to the 
rotationally summed integral cross sections. These contributions were obtained 
by keeping only those molecule-frame T matrix elements corresponding to a 
particular irreducible representation and nulling those corresponding to the other 
representations; then transforming to obtain the first row of the laboratory T 
matrix. Adding the contributions of the various symmetries yields only qualita- 
tively right state-to-state cross sections due to the interference of the different 

Table 6. State-to-state, rotationally elastic and inelastic, and vibrationally elastic differential cross 
sections (a~/sr) at selected angles, using basis V 

dcroj,/d~ 
0 
(deg) j '  = 0 3 4 6 7 0-10 

0 5.20 (+1) 0 6.15 (-1)  1.64 (-3)  0 5.27 (+1) 
5 4.76 (+1) 5.69 ( -3)  6.16 (-1)  1.59 (-3)  1.25 (-6)  4.82 (+l )  

10 4.19 (+1) 2.25 ( -2)  6.16 (-1)  1.46 ( -3)  4.96 (-6)  4.26 (+1) 
15 3.66 (+1) 4.98 ( -2)  6.17 (-1)  1.29 (-3)  1.10 ( -5)  3.73 (+1) 
20 3.11 (+1) 8.68 (-2)  6.17 ( -1)  1.13 (-3)  1.95 ( -5)  3.18 (+1) 
30 2.06 (+1) 1.79 (-1)  6.15 (-1)  9.23 (-4)  4.23 ( -5)  2.14 (+1) 
40 1.24 (+1) 2.74 (-1)  6.09 (-1)  8.61 (-4)  6.79 ( -5)  1.33 (+1) 
50 7.30 3.56 ( -1)  6.01 (-1)  8.47 (-4)  8.81 (-5)  8.26 
60 4.84 4.08 ( -1)  5.92 (-1)  8.89 (-4)  1.00 (-4)  5.85 
70 3.88 4.12 ( -1)  5.80 (-1)  1.16 ( -3)  1.08 (-4)  4.88 
80 3.23 3.67 (-1)  5.67 (-1)  1.78 ( -3)  1.16 (-4)  4.17 
90 2.35 2.87 ( -1)  5.54 (-1)  2.81 (-3)  1.34 ( -4)  3.20 

100 1.16 1.94 ( -1)  5.41 (-1)  4.28 (-3)  1.79 (-4)  1.90 
110 .2.50 (-1)  1.22 (-1)  5.32 (-1)  6.12 (-3)  2.63 ( -4)  9.11 (-1)  
120 3.75 (-1)  9.89 ( -2)  5.29 (-1)  8.25 (-3)  3.90 ( -4)  1.01 
130 2.10 1.41 ( -1)  5.32 (-1)  1.06 (-2)  5.57 ( -4)  2.79 
140 5.45 2.49 ( -1)  5.45 (-1)  1.31 (-2)  7.50 (-4)  6.25 
150 9.81 4.03 ( -1)  5.63 (-1)  1.54 (-2)  9.44 (-4)  1.08 (+1) 
160 1.43 (+1) 5.64 ( -1)  5.83 ( -1)  1.71 (-2)  1.11 (-3)  1.54 (+1) 
170 1.75 (+1) 6.86 ( -1)  5.96 (-1)  1.80 (-2)  1.22 ( -3)  1.88 (+1) 
180 1.86 (+1) 7.31 ( -1)  6.01 (-1)  1.84 ( -2)  1.27 (-3)  2.00 (+1) 
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Table 7. Partial wave contributions, ql(ao2), to the integral cross sections of Table 6 for the SEPlke 
potential 

j t  

1 0 3 4 6 7 3-10 0-10 

0 1.46 (+1)" 3.88 (-1) 9.85 (-3) 1.01 (-5) 1.44 (-7) 3.98 (-1) 1.50 (+1) 
1.46(+1) b 3.88 (-1) 9.82 (-3) 9.88 (-6) 1.40 (-7) 3.98 (-1) 1.50(+1) 

1 1.62 (+1) 2.32 (-2) 6.44 (-3) 1.77 (-5) 2.27 (-7) 2.97 (-2) 1.62 (+1) 
1.62 (+1) 2.35 (-2) 6.50 (-3) 1.75 (-5) 2.22 (-7) 3.00 (-2) 1.62 (+1) 

2 4.92 (+1) 1.26 6.97 1.31 (-2) 4.38 (-4) 8.24 5.74 (+1) 
4.94 (+1) 1.26 6.85 1.30 (-2) 4.23 (-4) 8.12 5.75 (+1) 

3 2.72 1.69 1.13 (-1) 3.80 (-2) 1.38 (-3) 1.84 4.57 
2.73 1.69 1.02 (-1) 3.51 (-2) 1.33(-3) 1.83 4.56 

4 3.31 (-1) 7.42 (-2) 3.02 (-2) 1.34 (-2) 1.38 (-3) 1.19 (-1) 4.49 (-1) 
3.32 (-1) 7.28 (-2) 2.92 (-2) 1.45 (-2) 1.27 (-3) 1.18 (-1) 4.50 (-1) 

5-8 1.34 (-1) 1.37 (-2) 1.23 (-3) 4.20 (-4) 4.52 (-4) 1.58 (-2) 1.50 (-1) 
1.36 (-1) 1.38 (-2) 1.19 (-3) 9.84 (-5) 4.08 (-4) 1.55 (-2) 1.52 (-1) 

9-12 8.79 (-3) 4.01 (-4) 8.0 (-6) 4.9 (-7) 9.6 (-7) 4.02 (-4) 9.20(-3) 
9.55 (-3) 3.89 (-4) 4.0 (-6) 4.0 (-8) 1.9 (-8) 3.93 (-4) 9.94 (-3) 

13-40 8.19 (-3) 0.0 0.0 0.0 0.0 0.0 8.18 (-3) 
2.45 (-3) 9.4 (-5) 0.0 0.0 0.0 9.4 (-5) 2.54 (-3) 

0-40 8.32 (+1) 3.45 7.13 6.51 (-2) 3.65 (-3) 1.06 (+1) 9.38 (+1) 
8.34 (+1) 3.44 7.00 6.28 (-2) 3.43 (-3) 1.06 (+1) 9.39 (+1) 

aUpper entry: molecule frame, basis V 
bLower entry: laboratory frame, basis III 

representations to reproduce a single T matrix element in the laboratory frame. 
(Recall that the molecule-frame symmetry classifications are only approximate, 
as discussed in the previous paper [7]). Finally, in Fig. 3, we plot versus r the 
first element of the potential matrix for every irreducible representation with and 
without the centrifugal potential for every symmetry. The terms including the 
centrifugal potential are defined by 

/ ( /+1)  (7) WP(r) = V~Ul,(r)+ 2r z 

Table 8. The individual-symmetry contributions ~(e) (a 2) to the j~j'>-0 state-to-state and to the ~0j' 
rotationally summed integral cross sections using basis V 

j l  
P 0 3 4 6 7 3-10 1-10 

A1 14.8 0.798 0.506 0.308 0.011 1.63 16.4 
A 2 0.008 0.000 0.000 0.001 0.000 0.001 0.009 
E 4.75 0.002 7.09 0.041 0.001 7,16 11.9 
T 1 0.540 0.022 0.073 0.614 0.014 0.779 1.32 
T 2 43.3 2.57 18.2 0.199 0.006 21.0 64.3 
Vertical 
Sum 63.4 3.39 25.9 1.16 0.032 30.6 93.9 
o-0f(a 2 ) 83.2 3.45 7.13 0.065 0.004 10.6 93.9 
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Fig. 3. The first diagonal potential matrix ele- 
ments (in hartrees) Vln zPu for each irreducible 
representation and the corresponding effective 
potentials W~ as functions of r (in bohrs) are 
shown as solid and dashed curves respectively. 
Note that vA&l 6 and V~22 are indistinguishable 
on this scale, so only one of them is shown 

'~ o.o ___ 
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irreducible representations E and T2. We see from these figures that the regions 
near the hydrogens dominate the coupling. 

4. Discussion and comparison to experiment 

Tables 6 and 7 show that the vibrationally elastic, rotationally summed differential, 
integral, and momentum-transfer cross sections calculated with the T matrix 
elements obtained by transforming the molecule-fixed frame T matrix to the 
laboratory-fixed frame, i.e. computed with bases IV and V, are converged to 
better than 1.5% with the worst relative errors occurring in the differential cross 
sections for forward scattering angles. The convergence of the state-to-state 
integral and momentum-transfer cross sections for excitations to j '  i> 8 and of the 
differential cross section for j '-> 6, especially in the forward scattering direction, 
is not as good, but those poorly converged cross sections are of relatively negligible 
magnitude. Hence we have not reported any cross sections for j '-> 8. 

The degree of agreement of  the results obtained in the fixed-nuclei approximation 
with the results obtained in the laboratory frame, where careful convergence tests 
have been carried out [1], show that our molecule-frame calculations are well 
converged. However, we should emphasize that both the molecule-frame and the 
laboratory-frame calculations compared here contain approximations, in addition 
to the rigid rotator approximation (neglect of vibration), the approximations in 
the potential, and the truncations to finite numbers of channels. The molecule- 
frame calculation reported here is based on the fixed-nuclei approximation, i.e. 
neglect of the molecular rotational kinetic energy. In principle this assumes 
I~r / Ia  ~ O, where Ia is the target's moment of inertia; further discussion of this 
approximation is given in the introduction. The laboratory-frame formalism 
presented here does not involve any such additional approximations, but the 
laboratory-frame calculations reported in [1] involved an additional approxima- 
tion in the selection of coupled channels, i.e. only channels directly coupled to 
the ground state by nonzero Hamiltonian matrix elements were included. Ground- 
state channels have A1 symmetry in the laboratory frame, and they are coupled 
directly only to A1 states with ( -1 )  J+l= ( -1 )  J. However, there are some A1 
channels with ( -1 ) J+ l~  ( -1 )  J [See Eq. (25b) of [7]]. Although these are not 
coupled to the ground state, they are coupled to other A1 states that are coupled 
tO the ground state, and hence they should be included for completeness. The 
good agreement of the two sets of results in Tables 3 and 5 indicates that neither 
the fixed-nuclei approximation in the molecule-frame calculations nor the limita- 
tion to directly interacting channels in the laboratory-frame ones causes significant 
errors for these quantities, as well as indicating that both calculations are well 
converged with respect to including more channels. This provides an important 
reassurance for future calculations of this type. Quantitatively, Table 5 shows 
that the relative differences in the state-to-state integral cross sections do not 
exceed 6% when the column corresponding to basis V is compared to the first 
of the columns corresponding to basis III of the laboratory frame. Furthermore, 
Table 7 shows good agreement between the dominant partial-wave contributions 
to the state-to-state integral cross sections, although it shows larger relative errors 
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for some higher partial waves which are relatively unimportant  or negligible 
compared to the s, p, d, and f partial waves (and are thus more sensitive to 
numerical inaccuracies). The effect of  neglecting the rotational energy spacings 
of CH4 in the present formulation becomes more serious as j '  increases, and we 
find that disagreement with the laboratory frame results becomes more important 
as j '  increases. This trend in the differences is, however, not necessarily due to 
the fixed-nuclei approximation.  Rather it may be due to the difficulty of converging 
the cross sections for highly excited rotational elvels with respect to the basis set 
expansion of the wavefunction. 

It is clear from Table 5 how sensitive the rotationally elastic and inelastic cross 
sections are to the type of  interaction potential and in particular to the approxima- 
tions used for polarization. The contribution of the inelastic cross sections to the 
rotationally summed integral and momentum-transfer  cross sections decreases 
by a factor of  2.2 when we account for non-adiabaticity by using the Plke 
semiclassical polarization potential instead of the adiabatic polarization potential 
[1]. It is also interesting to note that the rotationally inelastic cross sections 
calculated by Jain and Thompson (JT) [ 15] are even lower than our SEPlke cross 
sections (by about a factor of 1.8). The dependence upon the type of polarization 
manifests itself very clearly in the calculations of  Gianturco and Thompson (GT) 
[14] who use a parameter-dependent  polarization potential; their differential 
rotationally summed cross sections, for instance, vary by more than a factor of 
2 when they change their empirical parameter  (to) by only 0.04ao. We have also 
pointed out that we have used the local semiclassical exchange potential, while 
Jain and Thompson have used the Hara free-electron-gas model exchange poten- 
tial plus an orthogonalization constraint. It would be interesting to repeat our 
calculation with a different local exchange model. In Fig. 2 we compare our 0 ~ 0, 
0 -~ 3, and 0-~ 4 differential cross sections to those reported in the recent calculation 
by Jain and Thompson [15]. Their rotationally elastic cross section shows a much 
deeper minimum at about 110 ~ compared to ours while their rotationally inelastic 
0 ~  3 and 0-~ 4 cross sections (which are the only two they reported) are con- 
sistently lower than ours by about a factor of  2 but are qualitatively similar. We 
also note that our total integral cross section reported in Table 5, 94a02, is only 
about 12% higher than that of Jain and Thompson.  The older calculation by 
Varger et al [19] yields a somewhat higher total integral cross section of 106ao 2 
at 10 eV, whereas the very recent calculation of Lima et al. [20] yields only 65ao 2. 
Since the primary goals of  the new calculations reported here are to test the new 
symmetry-adapted scattering formalism and to compare molecule-frame and 
laboratory-frame calculations, we do not discuss these theoretical comparisons 
in any more detail. We do, however, present next, for completeness, a brief 
comparison to experiment, and we discuss the contributions of  the various 
molecule-frame symmetries to the calculated cross sections. 

The integral elastic and rotationally cross sections are not known experimentally, 
but the experimental total scattering cross sections provide an upper  bound to 
the 0-10 sum of O-oj, shown in Table 5. Furthermore, since the vibrationally and 
electronically inelastic cross sections are expected to be small at 10 eV, this bound 
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would be expected to be a close one. An early review [21] of  total scattering 
experiments gave 84a~ for CH4 at 10eV and there have been two recent measure- 
ments. Barbarito et al [22] obtained 60a 2, and Jones [23] obtained 91a~. The 
latter value is encouragingly close to our theoretical value of 94a 2 (Table 5). The 
fact that the Jones result is the most recent exper!ment greatly mollifies the 
otherwise disturbing disagreement with the other recent experiment. 

The individual contributions of  the irreducible representations to the rotationally 
summed integral cross sections in Table 8 show that at 10 eV the Tz representation 
contributes about 68% of the total cross section, A1 about 17%, E about 13%, 
and T1 and A2 about 1%. Figure 3 shows that although the eu VH,rH l part of  the 
potential is almost indistinguishable (and sometimes actually identical) for some 
of the individual symmetries, the centrifugal barriers corresponding to I_>6 
prevent most of  the scattering effects coming form the A2 irreducible representa- 
tion. The large centrifugal barriers for both A2 and T1 symmetries explain why 
all tr~o~, ) are small for these P. The T2 irreducible representation is not only the 
most important of  all for the rotationally summed integral cross sections, it also 
dominates the contributions of  other symmetries to the state-to-state integral 
cross sections; however these contributions are only qualitative as discussed in 
the previous section. As an example, we consider the j = 0 ~ j ' =  3 cross section. 
Table 8 shows that the most important symmetry is T2, while Table 7 shows that 
the d and f partial waves contribute the most. Hence, the most important coupling 
terms are the l = 1, l' = 2 and the l = 2, l' = 3 terms. The aboslute difference between 

T23 e x the two terms is negligible, hence we chose to plot V1213~r ) in Fig. 4. Table 8 
also shows that the T2 and the E symmetries are the most important for the 
j = 0 ~ j ' =  4 cross sections; while Table 7 shows that the d wave contributes the 
most. Hence, the most important coupling terms are the diagonal T2 and E1 = 2, 
l ' =  2 terms and the T2 off-diagonal l = 2, l ' =  4 term. These are also plotted in 
Fig. 4 where we also plot two important A 1 non-diagonal coupling terms, namely 

A14 ( ] A l l  / \ 
V l 3 1 4 \ r , ,  and VI316~F). 
The emphasis in this paper  is on the convergence of electron-spherical top 
scattering based on two different formalisms as a test of both. The new calculations 
are in excellent agreement with previous ones [1], which were compared pre- 
viously [1] to other results in the literature. Nevertheless, since there have been 
some new experimental differential cross sections reported since Ref. [1] 
appeared, we briefly summarize the comparison of theory and experiment for 
these cross sections. Table 4 shows that our rotationally summed differential cross 
sections are in good agreement with the experimental measurements of  Tanaka 
et al. [12]. Two more recent experimental measurements [24, 25] of  the rotationally 
summed differential cross sections are compared to those of  Tanaka et al. in [25]. 
Those of Curry et al [24] are in excellent agreement, whereas those of  Mfiller et 
al. [25] are smaller for 0 = 80~ ~ and larger for 0 = 110~ ~ Since our rota- 
tionally summed differential cross sections obtained in the present formulation 
are in excellent agreement with those obtained in our previous laboratory frame 
formulation [1] and since the previous ones were compared graphically to 
experimental measurements in [1], we do not repeat the plot against experiment 
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in the present paper. There is as yet no experiment that resolves the state-to-state 
rotationally inelastic differential cross sections, although Tanaka et al. [26] and 
Mfiller et al. [25] have attempted to analyze the rotationally broadened vibra- 
tionally elastic energy loss spectra in terms of individual Ak contributions by a 
high-j approximation. Mfiller et al have compared their j = 0 ~ j ' =  0, 3, 4 results 
to those of [1] and [15]. The results of [1] are in excellent agreement with 
experiment for the average magnitude of the cross section in all three cases but 
for j ' =  0 and 3, the theoretical results show a deeper minimum than the experi- 
mental between 105 ~ and 120 ~ . 

5. Summary 

Cross sections calculated with a fixed-nuclei electron-molecule scattering formal- 
ism are in excellent agreement with previous calculations employing a laboratory- 
frame approach and a direct coupling approximation. This confirms the essential 
validity of the fixed-nuclei and direct-coupling approximations and it checks 
both symmetry-adapted formalisms. Agreement with experiment is also reason- 
ably good, and this confirms the essential validity of the effective potential. 
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